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Regression Wavelet Analysis for
Near-lossless Remote Sensing Data Compression

Sara Álvarez-Cortés, Joan Serra-Sagristà, Senior Member, IEEE, Joan Bartrina-Rapesta, Michael
Marcellin, Fellow, IEEE

Abstract—Regression Wavelet Analysis (RWA) is one of the
current state-of-the-art lossless compression techniques for re-
mote sensing data. This paper presents the first regression-
based near-lossless compression method. It is built upon RWA, a
quantizer, and a feedback loop to compensate the quantization
error. Our near-lossless RWA (NLRWA) proposal can be followed
by any entropy coding technique. Here, NLRWA is coupled with
a bitplane-based coder that supports progressive decoding. This
successfully enables gradual quality refinement and lossless and
near-lossless recovery. A smart strategy for selecting the NLRWA
quantization steps is also included. Experimental results show
that the proposed scheme outperforms state-of-the-art lossless
and near-lossless compression methods in terms of compression
ratios and quality retrieval.

Index Terms—lossless and near-lossless compression, pyrami-
dal multiresolution scheme, regression wavelet analysis, remote
sensing data compression.

I. INTRODUCTION

SATELLITES carry on-board hyperspectral sensors that
collect enormous volumes of data, with large spectral

and spatial resolutions. Recording this information places
excessive demands on bandwidth and on on-board storage
capacity, meaning that part of the data could go uncaptured, or
that part of the acquired data could be immediately discarded
without further processing. Data compression has proven to
be a convenient means to mitigate these issues, and meet the
requirements of space missions. Different remote sensing data
compression techniques provide lossless, lossy, and/or near-
lossless recovery.

Lossless coding ensures perfect reconstruction at the price
of low compression ratios. Multiband Context-based Adaptive
Lossless Image Coding (M-CALIC) [1] is one of the most
renowned methods. It is a context-based adaptive system that
uses a nonlinear predictor. In 2012, the Consultive Committee
for Space Data Systems (CCSDS) proposed the standard
CCSDS-123.0-B-1 [2], which is formed by a predictor, a
mapper function, and an entropy encoder. It entails minor
computational cost and exploits the redundancy within 3-D
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spatial and spectral neighborhoods of pixels. During the last
decade, techniques based upon recursive least squares methods
have been presented [3]–[9]. Among them, Regression Wavelet
Analysis (RWA) [3] yields similar coding performance at
lower execution times. Indeed it is at least 398, 70 [10] and
17 [4] times faster when compared respectively to [5], [6] and
[4], which are some of the techniques that provide the lowest
lossless bitrates nowadays. Regarding the computational com-
plexity, RWA benefits from the low complexity and simple
implementation of the integer Haar Discrete Wavelet Trans-
form (DWT). References [3], [10]–[12] provide an extensive
study of the arithmetic operations required for each operation
involved in the RWA scheme, concluding that its number of
operations is lower than that of other efficient transforms such
as the reversible Karhunen-Loève Transform. Besides, RWA is
suitable to incorporate several light regression models. Conse-
quently, it obtains one of the best coding performance trade-off
concerning compression ratio and computational cost.

Lossy techniques enable high compression ratios at the
expense of allowing loss in decoding. Commonly, lossy
pipelines apply quantization prior to an entropy encoder, and a
rate control allocation stage afterwards. Lossy wavelet-based
techniques, such as JPEG 2000 [13], are well-known for
attaining excellent performance in terms of mean squared error
(MSE). Unfortunately, it does not provide any guarantees on
the error incurred by individual pixels. Other major lossy con-
tributions [14]–[16] extend the CCSDS-123.0-B-1 framework.
The fast and lightweight rate control algorithm of Valsesia
et al. [14] achieves comparable or better coding performance
than [15] and [16], while decreasing the computational com-
plexity.

Near-lossless compression aims at higher compression ra-
tios than lossless methods by allowing some loss of fidelity
in reconstruction. They bound the l∞-norm -equivalently, the
peak absolute error (PAE) or maximum absolute distortion
(MAD)- via setting an error tolerance value Λ. This user-
specified parameter sets the maximum admissible absolute
error so that PAE ≤ Λ provides a guaranteed bound on the
error incurred by individual pixels. Near-lossless compression
is used in remote sensing applications such as appraisals of
climate changes, natural resources and disasters, and also for
farming and military purposes.

Near-lossless techniques can be classified into: prediction-
based coding followed by quantization; and two-stage near-
lossless coders.

Prediction-based followed by quantization techniques com-
pute first a prediction of a pixel’s value from previously
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encoded pixels. They provide near-lossless compression by
introducing a quantization feedback loop and by including
the corresponding reconstruction function in the coder. M-
CALIC provides near-lossless compression and is one of the
most relevant techniques in this category. Other prominent and
low-complexity techniques, which may be amenable for on-
board computation, are the two near-lossless adaptations of
the lossless compression standard CCSDS-123.0-B-1, hence-
forth referred to as NLCCSDS-123 [17], and CCSDS-123-
AC [18]. Both NLCCSDS-123 and CCSDS-123-AC rely on
the predictor and mapper of CCSDS-123.0-B-1. CCSDS-123-
AC includes a lightweight contextual arithmetic encoder that
defines a context model and computes the probabilities that
will be used by a fixed-length arithmetic encoder. CCSDS-
123-AC improves the performance of both NLCCSDS-123
and M-CALIC, being the state-of-the-art in this compression
modality.

Two-stage near-lossless coders generally include a first
stage that generates a lossy reconstructed scene (image),
whereas the second stage quantizes the difference between the
reconstructed and the original scene and finally encodes the
quantized signal with an entropy encoder. The performance
of this strategy strongly depends on the distortion introduced
in the lossy stage. Methods such as [19] and [20] do not
include any selection criterion to determine the lossy bitrate.
Other methods such as [21], [22] and [23] achieve competitive
coding performance after using computationally expensive
iterative approaches to identify the optimal lossy bitrate. The
embedded two-stage near-lossless coder [23] yields the state-
of-the-art compression performance in this category.

This paper presents a low-complexity approach that consti-
tutes the first near-lossless technique based on regression in
a pyramidal multiresolution scheme and specifically on RWA.
Although some recent publications [10]–[12], [24]–[29] intro-
duce several modifications of RWA [3] –mainly in the lossless
regime– and investigate their compression performance, no
near-lossless implementation has ever been presented. Our
proposal 1) yields the same lossless performance as the
original RWA; 2) employs a novel and low-cost strategy to
select the quantization steps for near-lossless reconstruction;
and 3) can be followed by any entropy coder. Here, we report
results when employing JPEG 2000. This allows progressive
lossy-to-lossless/near-lossless transmission, while minimizing
the error propagation and optimizing both signal-to-noise ratio
(SNR) and PAE performance.

The paper is organized as follows: Section II introduces
our novel near-lossless scheme. Section III describes the
mathematical derivation that allows us to control the PAE, and
puts forward a smart criterion for selecting the quantization
steps. Section IV presents experimental results and provides
comparison to other state-of-the-art techniques. Finally, Sec-
tion V brings forward our conclusions.

II. NEAR-LOSSLESS REGRESSION WAVELET ANALYSIS

Regression Wavelet Analysis [3] exploits the correlation of
a scene in the spectral dimension. It is composed of two
sequential blocks: a simple integer Haar Discrete Wavelet
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Figure 1: Left: original scene V0 with z spectral compo-
nents, and x · y spatial samples. Right: first and second
DWT decomposition levels, i.e., respectively DWT(V0, 1) =(
V1,W1

)
, and DWT(V1, 1) =

(
V2,W2

)
or, equivalently,

DWT(V0, 2) =
(
V2,W2,W1

)
, where k = z · 2−1.

Transform followed by a regression operation. This second
block is performed through an Ordinary Least-Square (OLS)
method which predicts the Haar wavelet details from the Haar
approximations of the same decomposition level. The two
blocks are repeated pyramidally, level by level, from the first
to the highest possible decomposition level L = dlog2(z)e,
where z denotes the number of spectral components of the
original scene.

As explained in detail below, our near-lossless RWA (NL-
RWA) adaptation begins by applying Haar-DWT at the high-
est decomposition level (first operation). The approximation
and detail components at this level constitute the input sig-
nal for the regression (second operation). After the regres-
sion/prediction computation, the difference between the orig-
inal Haar wavelet details and their predictions is obtained.
The result is known as the residuals. The residuals are then
quantized (third operation) and then dequantized and passed
through one level of inverse Haar wavelet transform (fourth
operation). The resulting approximations form the input to
the linear regression for the next lower level. Computation
proceeds from the second to the fourth operation iteratively
from level L − 1 down to level 1. A detailed explanation is
provided next.

A. First operation: Integer Haar Discrete Wavelet Transform

Let us consider a scene V0∈Rm×z with z spectral compo-
nents and m = x·y spatial samples, where z is a power of two
(a suitable boundary handling procedure is used otherwise),
V0=

[
V0(1), . . . ,V0(z)

]
and V0(i) = V0

i∈Rm×1. An
integer Discrete Wavelet Transform (DWT) decomposition
level on the original scene is denoted as

DWT(V0, 1) =
(
V1,W1

)
. (1)

Here, V1∈Rm×(z·2−1) and W1∈Rm×(z·2−1) refer, respec-
tively, to the half-resolution DWT approximation and detail
components at the first decomposition level. A second de-
composition level can be computed on the approximation
components V1, maintaining the details W1 unchanged. After
the second decomposition level, the transformed scene is
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composed of the approximations V2 at the second level and
the details from the first W1 and second W2 levels. This
process is iteratively applied until level L. The application of
L decomposition levels to the original scene V0 is denoted as

DWT(V0, L) =
(
VL, (Wj)1≤j≤L) . (2)

See Fig. 1 for a graphical explanation.
In order to secure perfect reconstruction, a lifting

scheme [30] is employed. The Haar-DWT that considers this
scheme corresponds to the Haar S-Transform, and its forward
equations at level j are

Forward:
{

Wj
i = Vj−1

2i −Vj−1
2i−1

Vj
i = Vj−1

2i−1 + b 1
2W

j
i c,

(3)

where i ∈ I = {1, .., z · 2−j} corresponds to the spectral
component.

B. Second operation: Ordinary Least-Squares Method

An Ordinary Least-Squares [31] problem (OLS) is solved to
obtain the prediction of the details at level j, Ŵj . It consists
of a regression operation that minimizes the sum of the squares
of the distances between the original and the predicted details:

argmin
βββj

‖Wj − Ŵj‖2. (4)

The OLS is solved by applying a regression model. Two
regression models are considered here: Maximum and Parsi-
monious.

The Maximum model [3] delivers the most accurate predic-
tions, but uses all the k=z·2−j approximation components at
each level j to predict each detail component. The predicted
detail component i at level j, Ŵj

i , is computed as

Ŵj
i = βji,0 + βji,1V

j
1 + · · ·+ βji,kV

j
k. (5)

The regression coefficients βββj need to be stored and transmit-
ted as side information (SI), which amounts to z2

3 (1− 1
22j ) +

z(1− 1
2j ) [3].

The Parsimonious model [12] does not employ all the
z·2−j approximation components at level j to obtain the
regression coefficients, but, at most, 2r + 1. r is a natural
number and specifies the number of previous and subsequent
spectral neighbors of the component i considered by the
OLS operation. The SI size is thus smaller. Specifically,
the number of βββji involved in each prediction equates to
min{(2r + 2), (z·2−j + 1)}.

For both models, the regression coefficients βββj are com-
puted for each individual scene.

Next, the prediction residuals are computed as

Rj = Wj − round(Ŵj). (6)

The predictions Ŵj are rounded to operate with integer
values.

C. Third operation: USDZ Quantization

Each component i of the residuals at each level j, Rj
i ,

is quantized with a Uniform Scalar Dead-Zone Quantizer
(USDZQ), which delivers a symmetric behavior around 0. Let
cji be a coefficient of component i of the residuals at level j.
The quantized coefficient is obtained as follows:

c̃ji = USDZQ
(
cji
)

= sign(cji )

⌊
|cji |
∆j
i

⌋
. (7)

∆j
i refers to the quantization step for component Rj

i , and sign
is a function that extracts the sign value of coefficient cji .

Analogously, the dequantized coefficient can be described
as cji . The dequantization is computed as

cji = USDZQ−1
(
c̃ji
)

= ∆j
i c̃ji . (8)

Let R
j

i be the dequantized residual component i at level j
and let R

j
be the set of dequantized residual components at

level j.

D. Fourth operation: Reconstruction of Details

Let the same quantization step be applied for all the com-
ponents within a decomposition level j, i.e., ∀i, ∆j

i = ∆j . If
it is greater than 1, the dequantized residual components will
contain errors due to the quantization process.

Since only the dequantized residuals R
j

i will be available in
the decoder, the reconstructed details W

j

i are computed using
R
j

i as
W

j
= R

j
+ round(Ŵj). (9)

The reconstructed details W
j

are used both in the encoder
and decoder as input signal to the inverse wavelet transform
to derive the approximation components at the next Haar-DWT
level j − 1,

Ṽj−1 = DWT−1
(
(Ṽj ,W

j
), 1
)
. (10)

ṼL−1≤j≤1 refers to the reconstructed approximation compo-
nents of each decomposition level j. These components differ
from the original approximations because of the quantization
error.

Following the NLRWA notation, the inverse Haar S-
Transform equations are:

{
Ṽj−1

2i−1 = Ṽj
i − b 1

2W
j

i c
Ṽj−1

2i = W
j

i + Ṽj−1
2i−1.

(11)

Ṽj−1 is fed back into the system to produce the regression
coefficients at level j−1 (Eq. 4). Fig. 2 graphically represents
the whole NLRWA procedure for level j.

III. RECONSTRUCTION ERROR CONTROL

This section introduces how NLRWA controls the peak
absolute error. In addition, a smart strategy to select the quan-
tization steps is proposed. By using this criterion, competitive
compression ratios and scene quality retrieval are obtained.
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OLS details prediction (2nd op.) Rj computation (2nd op.) Rj quantization (3rd op.)
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Figure 2: From left to right and from top to bottom, the NLRWA coding process is rendered for the decomposition level j
and after the Haar S-Transform application, i.e., from the second operation to the fourth. All these stages are computed by the
coder, which obtains the details prediction signal Ŵj in the second operation and employs it in the fourth operation.

A. Peak Absolute Error Restriction

In this section, we show that NLRWA can control the largest
absolute error to a tolerance value Λ. Let v0

p,b represent the
pixel of the scene V0 located at position (p, b), where 1 ≤
p ≤ m and 1 ≤ b ≤ z, p corresponds to the spatial sample
and b to the spectral component (band) location. Denote the
reconstructed scene after applying NLRWA by Ṽ0, and let
ṽ0
p,b be the pixel of the recovered scene at the same location.

Then, the error is limited to

Λ ≥ PAE = ||V0 − Ṽ0||∞ = max
p,b
|v0
p,b − ṽ0

p,b|. (12)

Lemma 1. For NLRWA, Λ is equal to

Λ =

L∑

j=1

⌊1

2
∆j
⌋
. (13)

This equation depicts the largest possible cumulative
error introduced by the quantization stage in the final
reconstruction. Note that the superscript j refers to the
decomposition level of the quantization steps and not to a
power.

Proof: let the error in the quantized residual be denoted by
εR
j
i = R

j

i − Rj
i . Examination of the USDZQ reveals that

−(∆j − 1) ≤ εR
j
i ≤ (∆j − 1). Thus,

|εR
j
max| = max

i
|εR
j
i | = max

i
|Rj

i −Rj
i | ≤ ∆j − 1. (14)

From Eq. 6, the recovered details at level j (Eq. 9) are then
W

j

i = Rj
i + εR

j
i + round(Ŵj

i ) = Wj
i + εR

j
i .

In the reverse Haar S-Transform, for odd indexed compo-
nents (Eq. 11), the approximations are reconstructed as
Ṽj−1

2i−1 = Ṽj
i −

⌊
1
2

(
Wj

i + εR
j
i

)⌋
=





Ṽj
i −

(⌊
1
2W

j
i

⌋
+
⌊

1
2εR

j
i

⌋
+ 1
)
, if Wj

i and εR
j
i are odd,

Ṽj
i −

(⌊
1
2W

j
i

⌋
+
⌊

1
2εR

j
i

⌋)
, otherwise.

(15)
Comparing the original approximation components with

the reconstructed approximation components, for odd com-
ponents, the produced error is

δj−1
2i−1 =





−
⌊

1
2εR

j
i

⌋
− 1, if Wj

i and εR
j
i are odd,

−
⌊

1
2εR

j
i

⌋
, otherwise.

(16)

A similar analysis for even indexed components yields

δj−1
2i =





⌊
1
2εR

j
i

⌋
+ 1, if Wj

i is even and εR
j
i is odd,

⌊
1
2εR

j
i

⌋
, otherwise.

(17)
Now, the largest distortion in the reconstructed approxima-

tion components happens when the error in the reconstructed
residuals is the largest at all levels j. In such a case, for even
∆j values, εR

j
max will be odd, and vice versa. In summary, the

highest possible absolute error can be expressed as

|δj−1
max | = max

i
|δj−1
i | ≤





⌊
1
2 (∆j − 1)

⌋
+ 1, if ∆j even,

⌊
1
2 (∆j − 1)

⌋
, if ∆j odd.

(18)

The maximum possible error in the residuals at level j
contributes to the error as

λj =
⌊1

2
∆j
⌋
. (19)
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By induction, and after applying NLRWA iteratively from
level L down to level 1, the PAE in the reconstructed scene
is limited by the error tolerance value, derived as

Λ =

L∑

j=1

λj =

L∑

j=1

⌊1

2
∆j
⌋
. �

We note that other integer DWT could be used instead of
Haar wavelet transform in the first operation of NLRWA [10].
For such a case, Eq. 13 should be adapted accordingly.

B. Quantization Steps Selection Criterion

The number of combinations of quantization step sizes that
fulfill Eq. 13 is given by

N =

min{Λ,L}∑

m=1

2m

(
L

m

) (
Λ− 1

m− 1

)
(20)

(see [32]), which depends on the number of the highest
decomposition level L and on the error tolerance value Λ. This
combinatorial number grows rapidly as L and Λ increase, such
that assessing the coding performance for every combination
becomes unattainable.

Now, considering Eq. 13, odd quantization steps yield
better performance than even quantization steps. If only odd
quantization steps are considered, the possible combinations
are reduced to (see [32])

Nodd∆ =

(
Λ + L− 1

L− 1

)
. (21)

Despite this reduction, exhaustive search over every possible
combination is still prohibitive for reasonable values of L and
Λ.

Rather, a heuristic selection criterion is proposed. In order to
priorize the introduction of distortion into the residuals of the
lowest decomposition levels (the less significant components
in reconstruction), we define a quantization step-allocation
formulation that, once replaced in Eq. 13, describes an ap-
proximation of a finite geometric series. This approximation
enforces a positive and integer value for each quantization
step by means of introducing a rounding operation. Thanks to
this, higher compression ratios are achieved, while preserving
better the signal’s quality retrieval. Recall that the quantization
steps of the residuals at level j are the same (∆j

i = ∆j , ∀i).
Given Λ fixed by the user, an odd value is assigned to the
quantization step at level j according to:

∆j = 2

⌊
Λ

2j
+

1

2

⌋
+ 1 (22)

As an example, for a scene where L=8 wavelet decomposi-
tion levels have been applied, the quantization steps for Λ=10,
[R8,R7,R6,R5,R4,R3,R2,R1] are [1,1,1,1,3,3,7,11]; for
Λ=25, [1,1,1,3,5,7,13,27]; for Λ=50, [1,1,3,5,7,13,27,51].

The proposed strategy may not necessarily secure the best
rate-distortion results. However, it attains a very competitive
coding performance, is independent of the processed scene,
and is computationally efficient.

IV. EXPERIMENTAL RESULTS

Experimental results of our embedded coding framework,
NLRWA coupled with JPEG 2000, are reported in comparison
to state-of-the-art prediction-based followed by quantization
techniques, in comparison to the state-of-the-art two-stage
near-lossless coding technique, and in comparison to the best
performing rate control algorithm that enables lossy and near-
lossless recovery. Scenes used in the experiments are available
at [33].

A. Coding Pipeline

Our proposed coding method applies NLRWA through a
Matlab implementation, and then JPEG 2000 compresses
the NLRWA transformed data through Kakadu software. Al-
though our framework uses JPEG 2000, other coders could
be used [24]. Here, JPEG 2000 is employed mostly because
of its scalability capability, competitive lossy and lossless
performance, and capacity of providing progressive refinement
of the scene’s quality retrieval.

To obtain smooth and steady increasing rate-distortion
curves with JPEG 2000, the predictive weighting scheme
(PWS) [25] is applied. It attributes pyramidal weights accord-
ing to the significance of the NLRWA spectral components in
the reconstruction [11].

For our NLRWA approach, Maximum or Parsimonious
regression model is selected depending on the number of
spectral components of the original scene: Maximum model
for scenes where L ≤ 8, and Parsimonious model otherwise.
Notwithstanding, other models, such as Restricted, or variants,
e.g., Fast-Maximum or Fast-Restricted, can be selected. For a
more detailed description, see [10].

The side information for NLRWA can be encoded by
any entropy coder. Here, results are reported when applying
LZMA [34]. The side information’s bitrate is always added
to the bitrate required to losslessly encode our NLRWA
transformed scene.

B. Prediction-based followed by Quantization Coders Com-
parison

Table I presents an extended study of NLRWA + JPEG
2000 coding performance in comparison with CCSDS-123-
AC, NLCCSDS-123 and M-CALIC, for different Λ values. All
of these techniques employ the previous recovered pixel values
instead of the original ones and the same quantizer, increasing
their computational complexity in a similar and comparable
manner.

Experimental results are presented for 26 scenes from
different hyper- and ultraspectral sensors with a bit-depth
of 16 bpppc (bits-per-pixel-per-component): calibrated and
uncalibrated AVIRIS (referred to as CA and UA, respec-
tively), calibrated Hyperion (CH), filtered uncalibrated Hype-
rion (FUH), uncalibrated IASI (UI), and AIRS Gran (AG).
The scenes from the uncalibrated Hyperion (UH) corpus are
filtered [35], [36] to remove the streaking artifacts along one
of the spatial dimensions [37]. These artifacts appear because
of the pushbroom sensor nature, and they should be dealt with
for a better scene information assessment and visualization.
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Table I: Average lossless (Λ = 0) and near-lossless (Λ > 0) compression results for several prediction-based techniques and
our proposal, NLRWA + JPEG 2000. For all of them, USDZQ has been used for near-lossless. The best results are enhanced
in bold. The coding gains of our method with respect to the other three techniques are included within parentheses. A positive
difference means that our approach is better.

Average bitrates (bpppc) Average SNR (dB)

Sensor
abbreviation

Number
of scenes

Number
of spectral

components

Average
order-0

entropy (bpppc)
Λ values CCSDS-123-AC NLCCSDS-123 M-CALIC

NLRWA
+

JPEG 2000

CCSDS-123-AC
&

NLCCSDS-123
M-CALIC

NLRWA
+

JPEG 2000

CA 5 224 9.77

Λ = 0 3.66 (0.13) 3.73 (0.20) 4.03 (0.50) 3.53 — — —
Λ = 1 2.45 (-0.03) 2.54 (0.06) 2.87 (0.39) 2.48 59.29 (0.37) 59.29 (0.37) 59.66
Λ = 10 0.58 (-0.13) 0.94 (0.23) 0.88 (0.17) 0.71 42.94 (7.20) 41.38 (8.76) 50.14
Λ = 20 0.35 (-0.13) 0.72 (0.24) 0.53 (0.05) 0.48 37.46 (10.35) 35.38 (12.43) 47.81
Λ = 30 0.26 (-0.13) 0.63 (0.23) 0.40 (0.00) 0.40 34.15 (12.32) 31.84 (14.63) 46.47

UA 3 224 12.13

Λ = 0 5.87 (0.05) 5.95 (0.13) 6.13 (0.31) 5.82 — — —
Λ = 1 4.80 (-0.12) 4.89 (-0.03) 5.05 (0.13) 4.92 74.73 (0.06) 74.74 (0.05) 74.79
Λ = 10 1.96 (-0.56) 2.24 (-0.28) 2.22 (-0.30) 2.52 57.09 (4.19) 57.07 (4.21) 61.28
Λ = 20 1.14 (-0.41) 1.46 (-0.09) 1.40 (-0.15) 1.55 51.95 (4.93) 51.65 (5.23) 56.88
Λ = 30 0.83 (-0.27) 1.18 (0.08) 1.05 (-0.05) 1.10 48.90 (5.90) 48.20 (6.60) 54.80

CH 3 242 9.50

Λ = 0 5.36 (-0.02) 5.61 (0.23) — 5.38 — — —
Λ = 1 4.50 (-0.14) 4.75 (0.11) — 4.64 65.63 (0.78) — 66.41
Λ = 10 2.25 (-0.52) 2.54 (-0.23) — 2.77 47.87 (4.82) — 52.69
Λ = 20 1.44 (-0.57) 1.77 (-0.24) — 2.01 42.42 (5.58) — 48.00
Λ = 30 1.05 (-0.53) 1.40 (-0.18) — 1.58 39.27 (5.97) — 45.24

FUH 3 242 9.42

Λ = 0 4.26 (0.21) 4.37 (0.32) 4.28 (0.23) 4.05 — — —
Λ = 1 3.08 (0.05) 3.19 (0.16) 3.10 (0.07) 3.03 59.67 (0.20) 59.67 (0.20) 59.87
Λ = 10 0.73 (-0.20) 1.14 (0.21) 0.61 (-0.32) 0.93 42.73 (5.84) 42.53 (6.07) 48.57
Λ = 20 0.38 (-0.12) 0.79 (0.29) 0.32 (-0.18) 0.50 37.38 (8.46) 36.24 (9.60) 45.84
Λ = 30 0.26 (-0.07) 0.66 (0.33) 0.24 (-0.09) 0.33 34.15 (10.35) 32.23 (12.27) 44.50

UI 4 8359 8.12

Λ = 0 2.82 (0.27) 2.89 (0.34) 2.94 (0.39) 2.55 — — —
Λ = 1 1.53 (0.05) 1.68 (0.20) 1.74 (0.26) 1.48 46.95 (0.65) 46.95 (0.65) 47.60
Λ = 10 0.13 (-0.02) 0.49 (0.34) 0.41 (0.26) 0.15 31.52 (9.06) 28.34 (12.24) 40.58
Λ = 20 0.06 (-0.01) 0.42 (0.35) 0.29 (0.22) 0.07 26.26 (13.38) 21.89 (17.75) 39.64
Λ = 30 0.03 (-0.03) 0.40 (0.34) 0.26 (0.20) 0.06 23.17 (16.26) 18.36 (21.07) 39.43

AG 8 1501 11.39

Λ = 0 4.25 (0.28) 4.31 (0.34) 4.38 (0.41) 3.97 — — —
Λ = 1 3.08 (0.12) 3.13 (0.17) 3.21 (0.25) 2.96 70.73 (0.17) 70.73 (0.17) 70.90
Λ = 10 0.61 (-0.09) 0.98 (0.28) 0.70 (0.00) 0.70 54.16 (5.49) 53.75 (5.90) 59.65
Λ = 20 0.29 (-0.03) 0.66 (0.34) 0.36 (0.04) 0.32 49.04 (8.59) 47.97 (9.66) 57.63
Λ = 30 0.20 (-0.04) 0.57 (0.33) 0.26 (0.02) 0.24 45.77 (11.32) 44.27 (12.82) 57.09

Original CCSDS-123-AC NLCCSDS-123 M-CALIC NLRWA + JPEG 2000

PAE: 17 SNR: 41.64 dB PAE: 112 SNR: 26.12 dB PAE: 28 SNR: 35.92 dB PAE: 24 SNR: 49.81 dB

Figure 3: Crops of the spectral component 107 of the calibrated AVIRIS Yellowstone scene 18 (CA-Yellowstone sc18), and
its reconstruction after applying CCSDS-123-AC, NLCCSDS-123, M-CALIC, and our proposal NLRWA + JPEG 2000. In all
cases, the bitrate is about 0.5 bpppc.

NLRWA applies the Maximum regression model for
AVIRIS and Hyperion scenes and Parsimonious for the rest.
Here, NLCCSDS-123 employs its sample-adaptive encoder for
lossless and near-lossless coding, when Λ = 1, and block-
adaptive for the rest of near-lossless results. The predictor of
both NLCCSDS-123 and CCSDS-123-AC considers 3 previ-
ous spectral components, and their mode and local sum are
selected depending on the corpus. The neighbor oriented mode
has been used for AVIRIS, AIRS and IASI sensors, and the
column oriented predictor configuration for Hyperion sensor.
The local sum applied in prediction is full mode only when
processing the AVIRIS and IASI corpus scenes. The reduced
mode is set for the rest.

The C++ M-CALIC software implementation does not

handle transformed signals with more than 15 bpppc. Due to
the dynamic range extension, no results can be obtained for
the CH corpus. In contrast, NLRWA induces a dynamic range
expansion of only, at most, 1 bit in the detail components. This
avoids severe inconveniences in systems that support only a
limited bit-depth [38].

Table I reports coding performance measured in bitrate and
quality. For lossless coding (Λ = 0), our approach is superior.
That is, it yields the lowest rate of any of the compared meth-
ods. For near-lossless coding, the best coding performance in
terms of bitrate is provided by CCSDS-123-AC, while our
approach is competitive for most error tolerance values Λ and
for most sensors. Concerning quality, as measured by SNR,
our approach is always the best performing, with increasingly
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Table II: Bitrate and SNR results of Fully Embedded Two-Stage Coder [23] in comparison with our proposal, NLRWA + JPEG
2000, at several Λ values. Again, bold font indicates highest coding performance.

Bitrate (bpppc) SNR (dB)
[23] NLRWA + JPEG 2000 [23] NLRWA + JPEG 2000````````Scene

Λ 0 1 5 32 0 1 5 32 1 5 32 1 5 32

UA12-Hawaii 2.45 1.00 0.17 0.07 2.54 1.47 0.46 0.15 51.50 47.44 41.95 53.07 48.19 44.22
UA12-Maine 2.61 1.16 0.23 0.07 2.69 1.61 0.58 0.22 54.87 49.80 40.00 56.46 51.22 46.41

CA-Yellowstone sc00 3.76 2.24 0.70 0.17 3.74 2.70 1.30 0.42 59.04 50.57 42.77 60.56 53.22 46.65
UA-Yellowstone sc00 5.95 4.37 2.54 0.53 6.08 5.19 3.74 1.25 75.00 63.24 52.62 76.30 67.18 55.57

CH-Agricultural 6.11 4.53 2.77 0.84 5.49 4.76 3.60 1.61 65.43 53.83 42.23 67.60 58.42 45.84
CH-Coral Reef 5.80 4.21 2.40 0.60 5.12 4.37 3.19 1.31 61.06 49.87 38.52 63.25 54.16 42.29

CH-Urban 6.14 4.55 2.80 0.88 5.50 4.77 3.60 1.66 66.20 54.60 43.12 68.37 59.21 46.76
UH-Erta Ale 4.54 3.00 1.26 0.11 4.79 3.86 2.44 0.60 57.92 46.75 39.01 59.25 50.42 39.65

UH-Lake Monona 4.64 3.08 1.37 0.16 4.99 4.07 2.66 0.73 59.55 48.33 40.50 60.88 51.97 40.74

larger differences as Λ grows.
Fig. 3 depicts a crop of a component of a CA scene. For a

fair visual comparison, first we encode the scene for different
error tolerance values and then we choose the encoded scene
that requires a bitrate as close as possible to 0.5 bpppc. It can
be noticed that the crop corresponding to NLRWA + JPEG
2000 conserves better the details and is less noisy.
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Figure 4: Blue with circles and purple with crosses curves
represent the rate-distortion performance of, respectively, NL-
RWA and [23] with KLT replaced by Haar-DWT.

C. Two-Stage Near-lossless Coders Comparison

Table II reports bitrates and quality (SNR) results for the 9
scenes presented in the original work of Beerten et al. [23] in
comparison with our approach. UA12 refers to the UA sensor
that has stored the scenes with a bit-depth of 12 bpppc.

Both [23] and our approach use a bitplane-based entropy
coder that allows for some degree of embeddedness and en-
ables progressive lossy-to-lossless/near-lossless transmission.
Concerning the quality of the reconstructed scenes, given any
error tolerance value Λ, our proposal is always superior, as
happened for the case of comparing against prediction-based
coding techniques.

Concerning the bitrate performance, a cursory glance to
Table II shows the good behaviour of [23] (with the excep-
tion of results for the CH corpus in the lossless regime).
However, [23] applies a Karhunen-Loève-Transform (KLT)
before JPEG 2000 lossy layer. KLT efficiently decorrelates

Table III: Bitrate, SNR and PAE results of the rate control
presented by Valsesia et al. [14] and our near-lossless proposal.
The mean of the squared Pearson correlation coefficients of
each scene, r2, is included. z refers to the number of spectral
components.

Scene z r2
[14] NLRWA + JPEG 2000

Bitrate SNR PAE Bitrate SNR PAE

CA-Yellowstone sc00 224 0.65

1.00 44.60 255 0.91 51.28 8
2.00 57.79 25 1.73 55.37 3
3.00 64.10 25 2.69 60.56 1
4.00 71.13 3 3.74 ∞ 0

AG sc09 1501 0.65

1.00 53.86 18 0.96 60.40 7
2.00 63.04 4 1.86 64.53 3
2.99 67.28 3 2.87 70.15 1
4.02 79.25 1 3.90 ∞ 0

CASI-T0477F06-NUC 72 0.44

1.00 41.69 49 0.96 45.80 24
2.00 50.92 7 2.06 51.64 7
3.00 57.64 4 3.05 56.56 3
4.00 62.03 3 4.02 62.45 1

CRISM-sc167-NUC 545 0.40

1.00 44.14 48 1.02 41.07 39
2.00 52.59 7 2.00 48.25 14
3.00 59.37 3 2.97 54.43 6
4.00 64.25 2 4.06 61.61 2

LANDSAT MOUNTAIN 6 0.53

1.00 27.13 10 1.00 21.20 28
2.00 34.17 3 2.03 32.54 4
3.00 39.37 3 3.03 38.74 1
3.73 ∞ 0 4.06 ∞ 0

MODIS-MOD01DAY 14 0.65

1.00 38.70 230 1.11 28.27 491
2.00 49.59 134 2.00 38.09 139
3.00 58.66 17 2.99 46.11 52
4.00 63.90 7 4.02 53.00 20

the spectral dimension of a scene, but entails a high com-
putational complexity and a non-negligible side information.
When processing scenes with a very large number of spectral
components, e.g., the scenes recorded by AIRS or IASI
sensors, KLT results to be computationally untenable. Contrary
to this, our proposal not only provides competitive bitrates at
significantly lower computational complexity, but also benefits
from its minor side information requirements, so that NLRWA
is applicable also for scenes with more than 8,000 spectral
components.

A fair comparison between NLRWA and the state-of-the-art
method [23] in terms of computational complexity is provided
in Fig. 4, where the rate-distortion curves for both techniques
employ the Haar-DWT. In this case, our approach not only
provides again better quality, but also better bitrate.

D. Lossy Rate Control-based Coders Comparison

Table III depicts bitrate and quality (SNR and PAE) values
of our proposal and of the rate control presented by Valsesia
et al. [14] for all the scenes presented in that paper.

Notice that [14] only provides end-to-end rate-controlled
outcomes given a prefixed target bitrate, while our approach,
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thanks to JPEG 2000’s rate control algorithm, permits progres-
sive decoding of a codestream. In this experiment, several Λ
values have been tested in our approach, choosing those that
provide the closest bitrate to that reported in [14]. This last
technique yields near-lossless outcomes in the sense of being
able to determine the PAE that results when compressing a
scene at a specified target bitrate. This determination can only
be made post-compression, but does not require decompres-
sion of the codestream. On the other hand, the scheme is not
designed to achieve a desired target error in reconstruction.

NLRWA considers all (Maximum) or several neighbor
(Parsimonious) spectral components per spatial sample as
regressors in the prediction stage. Therefrom, it is very
suited to apply when processing scenes with a large number
of spectral components, i.e., for the CA Yellowstone scene
00 (CA-Yellowstone sc00), the AIRS Gran scene 09 (AG
sc09) and CASI-T0477F06-NUC. For them, NLRWA + JPEG
2000 is superior in PAE-bpppc and PAE-SNR performance.
Conversely, LANDSAT MOUNTAIN and MODIS-MOD01DAY
scenes have a low number of spectral components. This may
lead to lower Λ values than prescribed by the user, penalizing
the coding performance of our approach. For these two scenes,
the quantization steps criterion of Subsection III-B has been
modified, allowing the assignment of larger quantization step
values to each decomposition level.

The CRISM sensor is affected by common artifacts present
in pushbroom sensors. Although a non uniformity calibration
(NUC) has been applied for the CRISM scene, it contains
groups of spectral components still strongly compromised, as
shown by the low mean of the squared Pearson correlation
coefficient (0.40). For this sensor, [14], whose predictor takes
into consideration the correlation between adjacent spatial
samples, outperforms our proposal.

V. CONCLUSION

This manuscript introduces NLRWA, the first near-lossless
compression technique based on regression, in particular, on
the pyramidal multiresolution regression wavelet analysis. It
expands the state-of-the-art lossless compression technique
RWA by introducing quantization and a feedback loop to
compensate the quantization error. We also provide a smart
criterion, which is independent of the scene, to select a unique
quantization steps combination. This criterion helps avoiding
iterative computations while producing very competitive cod-
ing performances in terms of compression ratio and quality
of the reconstruced scene. NLRWA can be followed by any
entropy coder. Here, NLRWA is coupled with JPEG 2000,
enabling progressive lossy-to-lossless/near-lossless decoding.

Experimental results indicate that NLRWA + JPEG 2000
considerably outperforms rate control-based algorithms in both
bitrate and scene quality reconstruction for scenes with a large
number of spectral components. When comparing with two-
stage near-lossless coders, our approach always yields superior
quality retrieval, and achieves competitive compression ratios
at significantly lower computational cost. With respect to the
most competitive prediction-based followed by quantization
techniques such as CCSDS-123-AC, NLCCSDS-123 and M-
CALIC, our approach NLRWA + JPEG 2000 always yields

reconstructed scenes with the highest quality, and obtains
outstanding compression ratios while offering progressive de-
coding and some degree of embeddedness.
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[32] J. Serra-Sagristà, “Enumeration of Lattice Points in l1 Norm,” Informa-
tion processing letters, vol. 76, no. 1-2, pp. 39–44, Nov. 2000, DOI:
10.1016/S0020-0190(00)00119-8.

[33] Consultative Committee for Space Data Systems (CCSDS), “123.0-
B-Info TestData,” 2015. http://cwe.ccsds.org/sls/docs/SLS-DC/123.0-B-
Info/TestData

[34] I. Pavlov, “Lzma sdk (software development kit)”, https://www.7-zip.
org/sdk.html, 2007.

[35] I. Blanes, and J. Serra-Sagristà, “Pairwise Orthogonal Transform
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and M. W. Marcellin, ”Isorange Pairwise Orthogonal Transform“, IEEE
Transactions on Geoscience and Remote Sensing, vol. 53, no. 6, p. 3361–
3372, Dec. 2014, DOI: 10.1109/TGRS.2014.2374473.

 http://cwe.ccsds.org/sls/docs/SLS-DC/123.0-B-Info/TestData
 http://cwe.ccsds.org/sls/docs/SLS-DC/123.0-B-Info/TestData
http://www.7-zip.org/sdk.html
http://www.7-zip.org/sdk.html
http://public.ccsds.org/Pubs/120x2g1.pdf
http://eo1.usgs.gov/hyperion.php

